Copied to
clipboard

G = C2×C23.Q8order 128 = 27

Direct product of C2 and C23.Q8

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C23.Q8, C24.13Q8, C25.29C22, C23.289C24, C24.234C23, C23.58(C2×Q8), C23.832(C2×D4), (C22×C4).365D4, C23.368(C4○D4), C22.56(C22×Q8), (C22×C4).779C23, (C23×C4).320C22, C22.172(C22×D4), C22.92(C22⋊Q8), C22.162(C4⋊D4), C2.C4253C22, C22.32(C422C2), C2.9(C2×C4⋊D4), (C22×C4⋊C4)⋊13C2, C2.9(C2×C22⋊Q8), (C2×C4).290(C2×D4), (C2×C4⋊C4)⋊106C22, C2.5(C2×C422C2), C22.169(C2×C4○D4), (C2×C2.C42)⋊10C2, (C22×C22⋊C4).19C2, (C2×C22⋊C4).484C22, SmallGroup(128,1121)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C2×C23.Q8
C1C2C22C23C24C25C22×C22⋊C4 — C2×C23.Q8
C1C23 — C2×C23.Q8
C1C24 — C2×C23.Q8
C1C23 — C2×C23.Q8

Generators and relations for C2×C23.Q8
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=ce2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 868 in 454 conjugacy classes, 164 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C25, C2×C2.C42, C23.Q8, C22×C22⋊C4, C22×C4⋊C4, C2×C23.Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C4⋊D4, C22⋊Q8, C422C2, C22×D4, C22×Q8, C2×C4○D4, C23.Q8, C2×C4⋊D4, C2×C22⋊Q8, C2×C422C2, C2×C23.Q8

Smallest permutation representation of C2×C23.Q8
On 64 points
Generators in S64
(1 49)(2 50)(3 51)(4 52)(5 25)(6 26)(7 27)(8 28)(9 19)(10 20)(11 17)(12 18)(13 45)(14 46)(15 47)(16 48)(21 41)(22 42)(23 43)(24 44)(29 64)(30 61)(31 62)(32 63)(33 55)(34 56)(35 53)(36 54)(37 59)(38 60)(39 57)(40 58)
(2 48)(4 46)(5 62)(6 35)(7 64)(8 33)(10 22)(12 24)(14 52)(16 50)(18 44)(20 42)(25 31)(26 53)(27 29)(28 55)(30 59)(32 57)(34 38)(36 40)(37 61)(39 63)(54 58)(56 60)
(1 17)(2 18)(3 19)(4 20)(5 34)(6 35)(7 36)(8 33)(9 51)(10 52)(11 49)(12 50)(13 21)(14 22)(15 23)(16 24)(25 56)(26 53)(27 54)(28 55)(29 58)(30 59)(31 60)(32 57)(37 61)(38 62)(39 63)(40 64)(41 45)(42 46)(43 47)(44 48)
(1 47)(2 48)(3 45)(4 46)(5 38)(6 39)(7 40)(8 37)(9 21)(10 22)(11 23)(12 24)(13 51)(14 52)(15 49)(16 50)(17 43)(18 44)(19 41)(20 42)(25 60)(26 57)(27 58)(28 59)(29 54)(30 55)(31 56)(32 53)(33 61)(34 62)(35 63)(36 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 37 19 63)(2 40 20 62)(3 39 17 61)(4 38 18 64)(5 44 36 46)(6 43 33 45)(7 42 34 48)(8 41 35 47)(9 32 49 59)(10 31 50 58)(11 30 51 57)(12 29 52 60)(13 26 23 55)(14 25 24 54)(15 28 21 53)(16 27 22 56)

G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,17)(12,18)(13,45)(14,46)(15,47)(16,48)(21,41)(22,42)(23,43)(24,44)(29,64)(30,61)(31,62)(32,63)(33,55)(34,56)(35,53)(36,54)(37,59)(38,60)(39,57)(40,58), (2,48)(4,46)(5,62)(6,35)(7,64)(8,33)(10,22)(12,24)(14,52)(16,50)(18,44)(20,42)(25,31)(26,53)(27,29)(28,55)(30,59)(32,57)(34,38)(36,40)(37,61)(39,63)(54,58)(56,60), (1,17)(2,18)(3,19)(4,20)(5,34)(6,35)(7,36)(8,33)(9,51)(10,52)(11,49)(12,50)(13,21)(14,22)(15,23)(16,24)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(37,61)(38,62)(39,63)(40,64)(41,45)(42,46)(43,47)(44,48), (1,47)(2,48)(3,45)(4,46)(5,38)(6,39)(7,40)(8,37)(9,21)(10,22)(11,23)(12,24)(13,51)(14,52)(15,49)(16,50)(17,43)(18,44)(19,41)(20,42)(25,60)(26,57)(27,58)(28,59)(29,54)(30,55)(31,56)(32,53)(33,61)(34,62)(35,63)(36,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,37,19,63)(2,40,20,62)(3,39,17,61)(4,38,18,64)(5,44,36,46)(6,43,33,45)(7,42,34,48)(8,41,35,47)(9,32,49,59)(10,31,50,58)(11,30,51,57)(12,29,52,60)(13,26,23,55)(14,25,24,54)(15,28,21,53)(16,27,22,56)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,17)(12,18)(13,45)(14,46)(15,47)(16,48)(21,41)(22,42)(23,43)(24,44)(29,64)(30,61)(31,62)(32,63)(33,55)(34,56)(35,53)(36,54)(37,59)(38,60)(39,57)(40,58), (2,48)(4,46)(5,62)(6,35)(7,64)(8,33)(10,22)(12,24)(14,52)(16,50)(18,44)(20,42)(25,31)(26,53)(27,29)(28,55)(30,59)(32,57)(34,38)(36,40)(37,61)(39,63)(54,58)(56,60), (1,17)(2,18)(3,19)(4,20)(5,34)(6,35)(7,36)(8,33)(9,51)(10,52)(11,49)(12,50)(13,21)(14,22)(15,23)(16,24)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(37,61)(38,62)(39,63)(40,64)(41,45)(42,46)(43,47)(44,48), (1,47)(2,48)(3,45)(4,46)(5,38)(6,39)(7,40)(8,37)(9,21)(10,22)(11,23)(12,24)(13,51)(14,52)(15,49)(16,50)(17,43)(18,44)(19,41)(20,42)(25,60)(26,57)(27,58)(28,59)(29,54)(30,55)(31,56)(32,53)(33,61)(34,62)(35,63)(36,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,37,19,63)(2,40,20,62)(3,39,17,61)(4,38,18,64)(5,44,36,46)(6,43,33,45)(7,42,34,48)(8,41,35,47)(9,32,49,59)(10,31,50,58)(11,30,51,57)(12,29,52,60)(13,26,23,55)(14,25,24,54)(15,28,21,53)(16,27,22,56) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,25),(6,26),(7,27),(8,28),(9,19),(10,20),(11,17),(12,18),(13,45),(14,46),(15,47),(16,48),(21,41),(22,42),(23,43),(24,44),(29,64),(30,61),(31,62),(32,63),(33,55),(34,56),(35,53),(36,54),(37,59),(38,60),(39,57),(40,58)], [(2,48),(4,46),(5,62),(6,35),(7,64),(8,33),(10,22),(12,24),(14,52),(16,50),(18,44),(20,42),(25,31),(26,53),(27,29),(28,55),(30,59),(32,57),(34,38),(36,40),(37,61),(39,63),(54,58),(56,60)], [(1,17),(2,18),(3,19),(4,20),(5,34),(6,35),(7,36),(8,33),(9,51),(10,52),(11,49),(12,50),(13,21),(14,22),(15,23),(16,24),(25,56),(26,53),(27,54),(28,55),(29,58),(30,59),(31,60),(32,57),(37,61),(38,62),(39,63),(40,64),(41,45),(42,46),(43,47),(44,48)], [(1,47),(2,48),(3,45),(4,46),(5,38),(6,39),(7,40),(8,37),(9,21),(10,22),(11,23),(12,24),(13,51),(14,52),(15,49),(16,50),(17,43),(18,44),(19,41),(20,42),(25,60),(26,57),(27,58),(28,59),(29,54),(30,55),(31,56),(32,53),(33,61),(34,62),(35,63),(36,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,37,19,63),(2,40,20,62),(3,39,17,61),(4,38,18,64),(5,44,36,46),(6,43,33,45),(7,42,34,48),(8,41,35,47),(9,32,49,59),(10,31,50,58),(11,30,51,57),(12,29,52,60),(13,26,23,55),(14,25,24,54),(15,28,21,53),(16,27,22,56)]])

44 conjugacy classes

class 1 2A···2O2P2Q2R2S4A···4X
order12···222224···4
size11···144444···4

44 irreducible representations

dim11111222
type++++++-
imageC1C2C2C2C2D4Q8C4○D4
kernelC2×C23.Q8C2×C2.C42C23.Q8C22×C22⋊C4C22×C4⋊C4C22×C4C24C23
# reps1183312412

Matrix representation of C2×C23.Q8 in GL8(𝔽5)

40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
10000000
04000000
00100000
00010000
00001000
00000100
00000010
00000004
,
10000000
01000000
00100000
00010000
00001000
00000100
00000040
00000004
,
40000000
04000000
00100000
00010000
00001000
00000100
00000010
00000001
,
01000000
10000000
00340000
00020000
00002000
00000300
00000040
00000004
,
10000000
01000000
00420000
00410000
00000400
00001000
00000004
00000010

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0] >;

C2×C23.Q8 in GAP, Magma, Sage, TeX

C_2\times C_2^3.Q_8
% in TeX

G:=Group("C2xC2^3.Q8");
// GroupNames label

G:=SmallGroup(128,1121);
// by ID

G=gap.SmallGroup(128,1121);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,120,758,723]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=c*e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽